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Quantitative evaluation on FilterRAG
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Fig. Grounding score comparison
across methods

e Calibrate combined confidence from
retrieval and generation for safe filtering.

e Map hallucination triggers under
knowledge heavy questions and weak

Fig. Comparison of model accuracy
across settings

Ablation study Qualitative evaluation
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e Zero-shot Learning: Enhancing
retrieval and reducing hallucinations in " " a
Grid Sizes

OOD scenarios.

e Comprehensive Evaluation: Evaluation
on the OK-VQA dataset, demonstrating
robustness and reliability for knowledge-
iIntensive tasks.

Fig. Effect of grid sizes on
accuracy and grounding score

Question: What does this grow from?
Predicted Answer: flowers

Ground Truth: ground, plant, hibiscus
plant stem, root

Setting: In Domain

Error: Wrong prediction

Question: What type of bike is on the
ground?

Predicted Answer: dirt bike

Ground Truth: bmx, bicycle, 10 speed
Setting: Out-of-Distribution

Error: Wrong prediction

Question: Why is this plugged in?
Predicted Answer: plug

Ground Truth: charge, to have power
and work, power, outlet

Setting: Out-of-Distribution

Error: Wrong prediction
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