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Existing problems

External knowledge Out-of-distribution, Hallucination

Example: What do they call running Example: What's the capital of Mars?
around the bases on a single hit? - The capital of Mars is Muskland.
- home run (lack of grounding in reality)

External knowledge, Out-of-distribution, Hallucination

Photo Credit: NASA/JPL-Caltech



Roadmap

Part 1:
* Preliminaries: Zero-Shot Learning, VLMs, VQA in VLMs, RAG, OOD, Hallucination
e Research Questions
e Datasets (VQA V2 and Ok-VQA)



Visual question answering (VQA) in VLMs

e Inputs: Given an image (I) and a question (Q),
e Goal: Predict an answer (A) to the question (Q).

This is expressed as:
P(A) = max P(A | I,Q
(A) = arg Ieal (A 1,Q)

In VLMs, answer (A) - an open-ended sequence
(e.g., free text)

- o . 5
P(A) —_ H P(ﬁ'rt | a1 1. Q) Is this at a salt water beach or a lake:
P - Salt water beach, Salt water, Lake, Beach
Dataset: okvga.allenai.org 4

How to Configure Good In-Context Sequence for Visual Question Answering (CVPR'24)



Vision language models (VLMSs)
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BLIP Pre-training Dataset

COCO VG SBU CC3M CCI2M LAION
#1image | 113K 100K 860K 3M 10M 115M
# text 567K 769K 860K 3M 10M 115M

BLIP Fine-tuning: VQA V2 (83k/41k/81k
images for training/validation/test)



Out-of-distribution (OOD) detection

In-distribution (ID)

D = Dy U Doop

)
OOD Dataset

OOD detection in VQA setting

Scoring function

l
(I,Q) € Dy if S(UI,Q)> A, else (I,Q) € Doop

)
Threshold



Zero-shot learning

e Inputs: Given an image (I) and a question (Q)
e Goal: To enable a model to generalize to unseen tasks or domains.

Example: A BLIP-VQA model, f(/, Q), is trained on the VQA V2 dataset but
will be evaluated on the OK-VQA dataset without task-specific fine-tuning
on OK-VQA.



Retrieval-augmented generation (RAG)

Retrieved document
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Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (NeurlPS'20)



Hallucination detection

Predicted answer
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Research questions

RQ1: How can zero-shot learning improve retrieval and VQA
accuracy to address hallucination in multimodal RAG systems?

RQ2: How does zero-shot learning contribute to better OOD
performance in VQA models?
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Dataset: VQA V2

Is this person trying to hit a ball?
What is the person hitting the ball with?

Dataset: visualga.org

VQA V2
e Images: MS-COCO
e 1.1M questions
e 11.1M ground truth answers

v A Visual Question Answering

—— axl — .
————— : —— ST DB i,

What is the animal in the water?
How many people are present?

Prof. Devi Parikh
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Dataset: OK-VQA

Outside Knowledge VQA (OK-VQA)
e Images: MS-COCO
e 14,055 open-ended Qs
e 5 ground truth ans per Qs

What city is this? \
Answer: Washington dc

What was the first movie was the
character in this image first featured? _
Answer. Star Wa rS m ,ﬁ:-LALRE'w:|::[TJASLT|L:'ELTLFGENCE

Carnegie
Mellon g‘
University

Dataset: okvga.allenai.org 12
Microsoft COCO (ECCV'14)



Prepare OK-VQA dataset in OOD setting

* One: Vehicles and Transportation

e Two: Brands, Companies and Products

e Three: Objects, Material and Clothing e For in domain setting
e Four: Sports and Recreation e For OOD setting
e Five: Cooking and Food

e Six: Geography, History, Language and Culture

e Seven: People and Everyday Life

e Eight: Plants and Animals

* Nine: Science and Technology

e Ten: Weather and Climate

e Other: Other

Detecting OOD Inputs in Deep NNs Using an Early-Layer Output (2019) 13



Roadmap

Part 2:
e Method: Architecture, Loss Function
e Experimental Results (Qualitative, Quantitative, Visual results, and
Ablation Study)
e Final Discussion (Contributions and Limitations)
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RAG model architecture
Overall RAG Pipeline
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Evaluation

Retrieved knowledge Step 5
combines I-Q pair

-< BLIP-VQA
Step 1

Step 2 Step 3 Step 4

Wiki: Search-Based Retrieval GPT- Neo 1.3B
Summarization-Based Extraction (decoder-only)
DBpedia: SPARQL Query

Embedding model: Sentence Transformers (all-MiniLM-L6-v2) 15



Loss function

Binary cross-entropy loss

L=——
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Predicted probability
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)
Ground truth
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Image Question, Prediction, GT Accuracy (%) Grounding Score (%)
Base FilterRAG Base FilterRAG

What type of plane is that?

" | 40.0 36.5 71.70 70.37

Predicted Answer:
commercial

Ground Truth (GT) Answers:
commercial, passenger,
quanta, md 80
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Accuracy: baseline vs. FilterRAG

e Base1: BLIP VQA (model) +
VQA V2 (Dataset)

e Base2: BLIP VQA (model) +
Ok-VQA (Dataset)

e Proposed: BLIP VQA (model)
+ RAG + Ok-VQA (Dataset) +
O0OD

Accuracy (%)
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Note: Iterates over 100 samples only
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Accuracy: SOTA vs FilterRAG (OK-VQA)

1.3B

Method Knowledge Resources Acc

BAN (Marino et al., 2019) - 25.1
MUTAN (Marino et al., 2019) - 26.41
KRISP (Marino et al., 2021) Wikipedia+ConceptNet 38.35
MAVEX (WU et al., 2022) Wikipedia+ConceptNet+Google 394

Images

KAT (Gui et al. 2022) Wikidata+Frozen GPT-3 (175B) 54.41
FilterRAG (Proposed) Wikidata + DBpedia + GPT-Neo 36.5
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Grounding score:

e Base1: BLIP VQA (model) +
VQA V2 (Dataset)

e Base2: BLIP VQA (model) +
Ok-VQA (Dataset)

e Proposed: BLIP VQA (model)
+ RAG + Ok-VQA (Dataset) +
O0OD

baseline vs. FilterRAG
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Note: Iterates over 100 samples only
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Prediction visualization (ID case)

A center affixed unit like this one in a kitchen is
called a what?

Predicted Answer: island

Ground Truth Answers: island

|s this at a salt water beach or a lake?
Predicted Answer: beach

Ground Truth Answers: salt water beach, salt
water, lake, beach
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Prediction visualization (OOD case)
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What is the name of the board he is on? What type of plane is that?
Predicted Answer: surfboard Predicted Answer: commercial
Ground Truth Answers: surf board, surfboard, surf Ground Truth Answers: commercial,

passenger, quanta, md 80
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Prediction visualization (OOD Case - failure

What is this surf trick called? Why is this plugged in?

Predicted Answer: riding wave Predicted Answer: plug

Ground Truth Answers: ride, tube ride, ollie, wave Ground Truth Answers: charge, to have power
runner and work, power, outlet
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Ablation study

Grid Size: 2 x 2
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Note: Iterates over 100 samples only 24



Final discussion

Contributions:
e Eliminates fine-tuning through zero-shot learning

e Uses external knowledge to address OOD cases beyond image-based reasoning
e Ensures reliable hallucination evaluation for VQA tasks

Limitations/Future works:
e Optimize generation modules (LLM/VLM) through fine-tuning for
better outputs
e Explore OK-VQA like datasets for comprehensive OOD representation

e Use fine-tuning to create synthetic questions for underrepresented
OOD cases
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Thank You!
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