FilterRAG: Zero-Shot Informed Retrieval-Augmented Generation to Mitigate Hallucinations in VQA

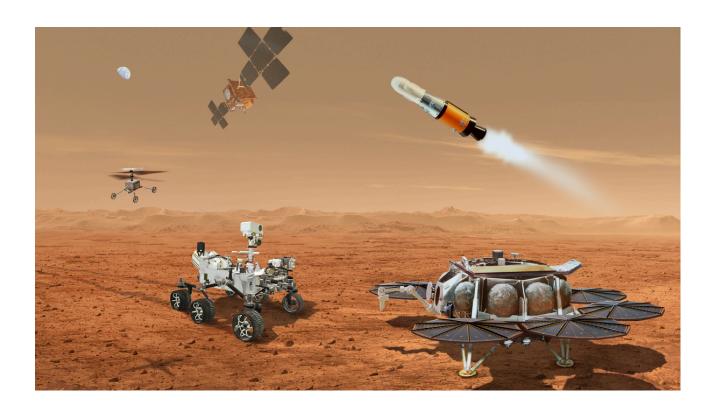
Existing problems

External knowledge

Example: What do they call running around the bases on a single hit?

- home run

Out-of-distribution, Hallucination



Example: What's the capital of Mars?The capital of Mars is Muskland.(lack of grounding in reality)

External knowledge, Out-of-distribution, Hallucination

Roadmap

Part 1:

- Preliminaries: Zero-Shot Learning, VLMs, VQA in VLMs, RAG, OOD, Hallucination
- Research Questions
- Datasets (VQA V2 and Ok-VQA)

Part 2:

- Method: Architecture, Loss Function
- Experimental Results (Qualitative, Quantitative, Visual results, and Ablation Study)
- Final Discussion (Contributions and Limitations)

Visual question answering (VQA) in VLMs

- Inputs: Given an image (I) and a question (Q),
- Goal: Predict an answer (A) to the question (Q).

This is expressed as:

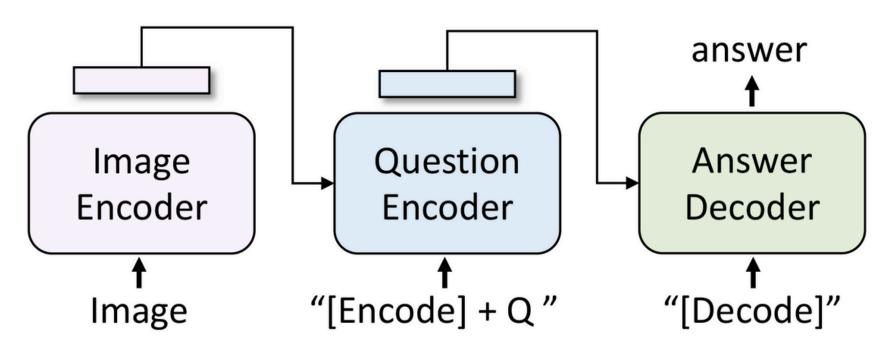
$$P(\hat{A}) = \arg\max_{A \in \mathcal{A}} P(A \mid I, Q)$$

In VLMs, **answer (A)** - an open-ended sequence (e.g., free text) $_{T}$

$$P(\hat{A}) = \prod_{t=1}^{I} P(a_t \mid a_{1:t-1}, I, Q)$$

Is this at a salt water beach or a lake?
- Salt water beach, Salt water, Lake, Beach

Vision language models (VLMs)



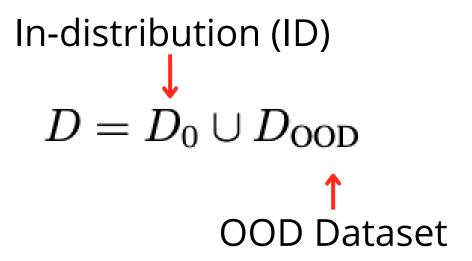
BLIP-VQA Architecture

BLIP Pre-training Dataset

	COCO	VG	SBU	CC3M	CC12M	LAION
# image	113K	100K	860K	3M	10M	115M
# text	567K	769K	860K	3M	10M	115M

BLIP Fine-tuning: VQA V2 (83k/41k/81k images for training/validation/test)

Out-of-distribution (OOD) detection



OOD detection in VQA setting

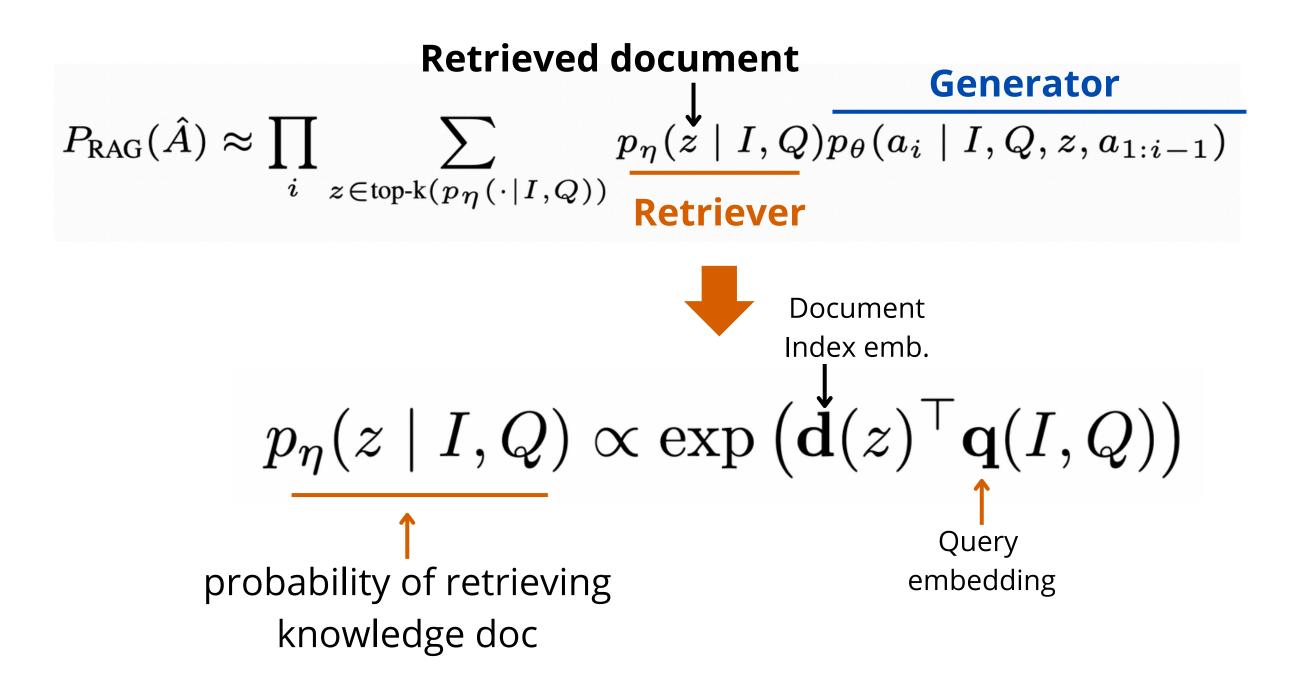
Scoring function
$$(I,Q)\in D_{\mathrm{in}}\quad \text{if}\quad S(I,Q)\geq \lambda,\quad \text{else}\quad (I,Q)\in D_{\mathrm{OOD}}$$
 Threshold

Zero-shot learning

- Inputs: Given an image (I) and a question (Q)
- Goal: To enable a model to generalize to unseen tasks or domains.

Example: A **BLIP-VQA** model, *f*(*l*, *Q*), is trained on the **VQA V2 dataset** but will be evaluated on the **OK-VQA dataset** without task-specific fine-tuning on OK-VQA.

Retrieval-augmented generation (RAG)



Hallucination detection

Grounding Score:
$$g_{ ext{mean}}(\hat{A}) = rac{1}{n} \sum_{i=1}^n rac{\mathbf{v}_{ ext{pred}} \cdot \mathbf{v}_{ ext{gt}}^i}{\|\mathbf{v}_{ ext{pred}}\| \|\mathbf{v}_{ ext{gt}}^i\|}$$
 Ground Truth embedding Cosine Similarity

$$\begin{array}{ccc} \text{Hallucination} & \text{if} & g_{\text{mean}}(\hat{A}) < \tau \\ & & \uparrow \\ & & \text{Threshold} \end{array}$$

Research questions

RQ1: How can **zero-shot learning** improve **retrieval** and **VQA** accuracy to address **hallucination** in multimodal **RAG** systems?

RQ2: How does zero-shot learning contribute to better **OOD performance** in VQA models?

Dataset: VQA V2

Is this person trying to hit a ball?
What is the person hitting the ball with?

What is the animal in the water? How many people are present?

VQA V2

- Images: MS-COCO
- **1.1M** questions
- 11.1M ground truth answers

Dataset: visualqa.org

Dataset: OK-VQA

What city is this?

Answer: Washington dc

What was the first movie was the character in this image first featured?

Answer: Star wars

Outside Knowledge VQA (OK-VQA)

- Images: MS-COCO
- **14,055** open-ended Qs
- **5 ground truth** ans per Qs

Dataset: okvqa.allenai.org Microsoft COCO (ECCV'14)

Prepare OK-VQA dataset in OOD setting

- One: Vehicles and Transportation
- Two: Brands, Companies and Products
- Three: Objects, Material and Clothing
- Four: Sports and Recreation
- Five: Cooking and Food
- Six: Geography, History, Language and Culture
- Seven: People and Everyday Life
- Eight: Plants and Animals
- Nine: Science and Technology
- Ten: Weather and Climate
- Other: Other

- For in domain setting
- For OOD setting

Roadmap

Part 1:

- Preliminaries: Zero-Shot Learning, VLMs, VQA in VLMs, RAG, OOD, Hallucination
- Research Questions
- Datasets (VQA V2 and Ok-VQA)

Part 2:

- Method: Architecture, Loss Function
- Experimental Results (Qualitative, Quantitative, Visual results, and Ablation Study)
- Final Discussion (Contributions and Limitations)

RAG model architecture

Overall RAG Pipeline

Step 1

Retrieval

Step 2

Wiki: Search-Based Retrieval
Summarization-Based Extraction
DBpedia: SPARQL Query

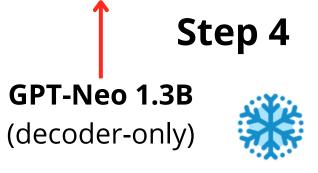
Retrieved knowledge combines I-Q pair

Augmentation

Step 3

Step 5

Generation



Loss function

Binary cross-entropy loss

Predicted probability

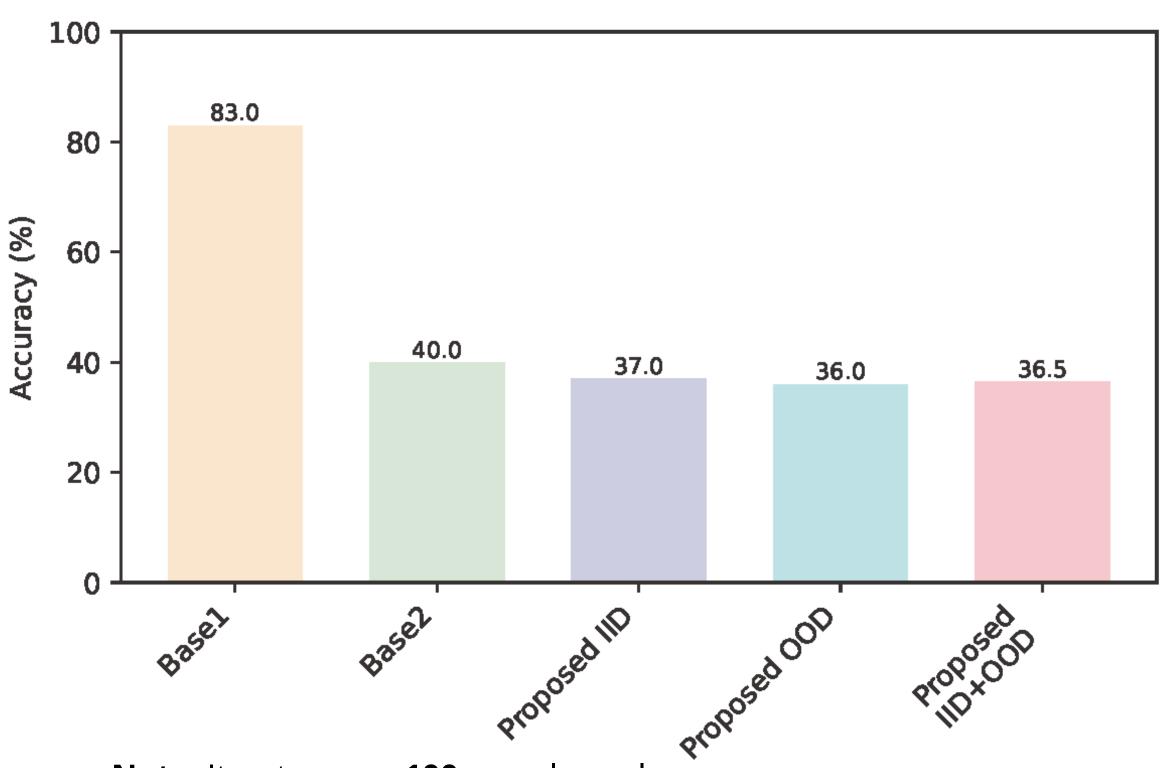
$$\mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \cdot \log(p_i) + (1 - y_i) \cdot \log(1 - p_i) \right]$$

Ground truth

Image	Question, Prediction, GT	Accuracy (%)		Grounding Score (%)	
	What type of plane is that?	Base	FilterRAG	Base	FilterRAG
	Predicted Answer: commercial	40.0	36.5	71.70	70.37
local bank TAS Spirit of Australia	Ground Truth (GT) Answers: commercial, passenger, quanta, md 80				

Accuracy: baseline vs. FilterRAG

- **Base1**: BLIP VQA (model) + VQA V2 (Dataset)
- Base2: BLIP VQA (model) + Ok-VQA (Dataset)
- Proposed: BLIP VQA (model)
 + RAG + Ok-VQA (Dataset) +
 OOD



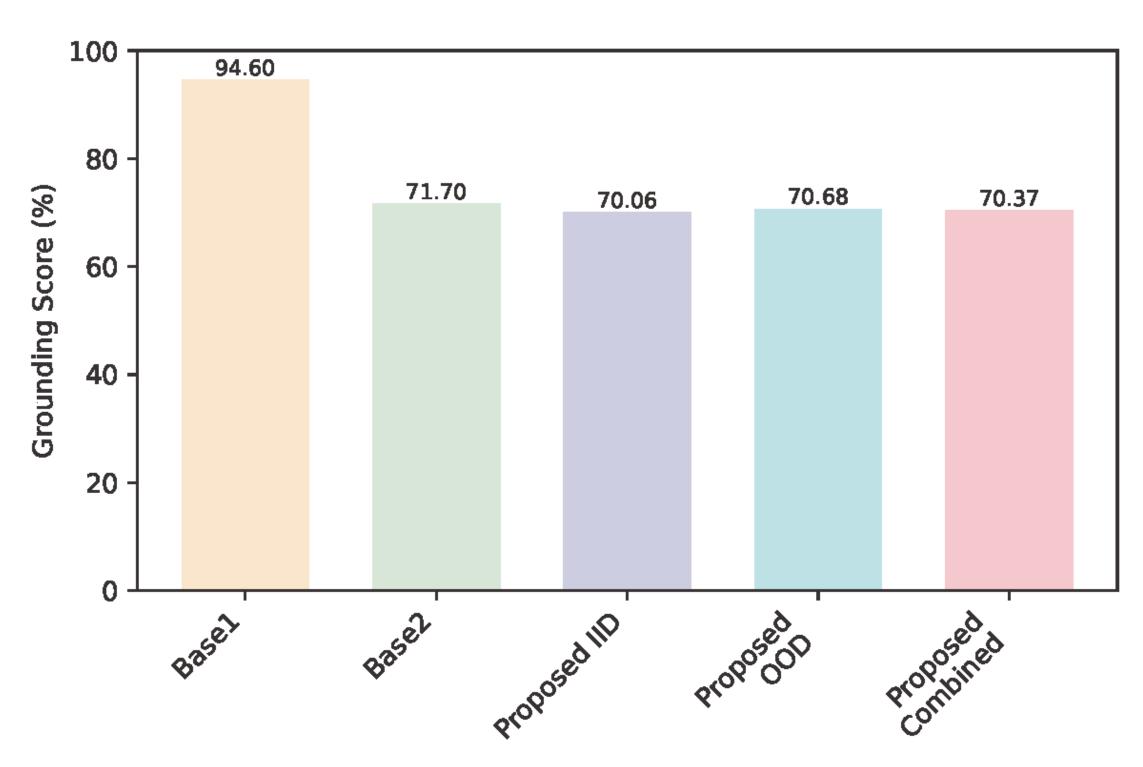
Note: Iterates over 100 samples only

Accuracy: SOTA vs FilterRAG (OK-VQA)

Method	Knowledge Resources	Acc	
BAN (Marino et al., 2019)	_	25.1	
MUTAN (Marino et al., 2019)	-	26.41	
KRISP (Marino et al., 2021)	Wikipedia+ConceptNet	38.35	
MAVEx (Wu et al., 2022)	Wikipedia+ConceptNet+Google Images	39.4	
KAT (Gui et al. 2022)	Wikidata+Frozen GPT-3 (175B)	54.41	
FilterRAG (Proposed)	Wikidata + DBpedia + GPT-Neo 1.3B	36.5	

Grounding score: baseline vs. FilterRAG

- **Base1**: BLIP VQA (model) + VQA V2 (Dataset)
- Base2: BLIP VQA (model) + Ok-VQA (Dataset)
- Proposed: BLIP VQA (model)
 + RAG + Ok-VQA (Dataset) +
 OOD



Note: Iterates over **100** samples only

Prediction visualization (ID case)

A center affixed unit like this one in a kitchen is called a what?

Predicted Answer: island

Ground Truth Answers: island

Is this at a salt water beach or a lake?

Predicted Answer: beach

Ground Truth Answers: salt water beach, salt

water, lake, beach

Prediction visualization (OOD case)

What is the name of the board he is on?

Predicted Answer: surfboard

Ground Truth Answers: surf board, surfboard, surf

What type of plane is that?

Predicted Answer: commercial

Ground Truth Answers: commercial,

passenger, quanta, md 80

Prediction visualization (OOD Case - failure)

What is this surf trick called?

Predicted Answer: riding wave

Ground Truth Answers: ride, tube ride, ollie, wave

runner

Why is this plugged in?

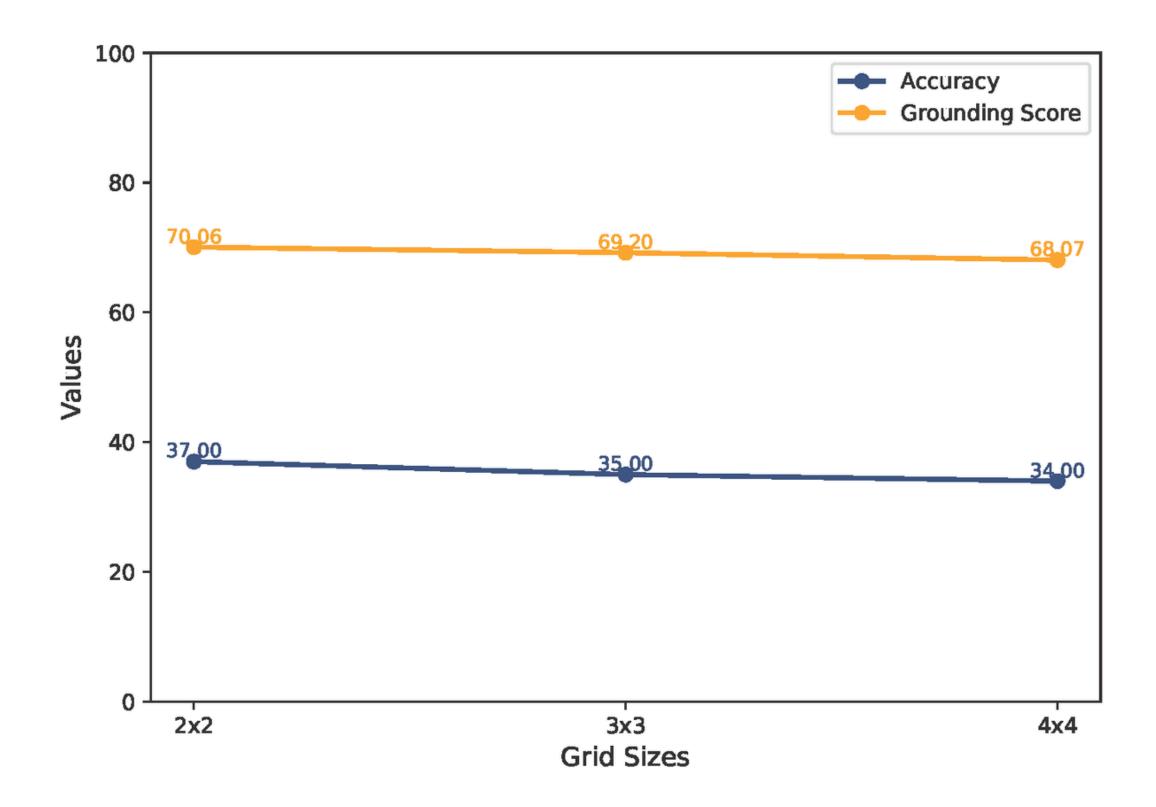
Predicted Answer: plug

Ground Truth Answers: charge, to have power

and work, power, outlet

Ablation study

Grid Size: 2 x 2



Note: Iterates over **100** samples only

Final discussion

Contributions:

- Eliminates fine-tuning through zero-shot learning
- Uses external knowledge to address OOD cases beyond image-based reasoning
- Ensures reliable hallucination evaluation for VQA tasks

Limitations/Future works:

- Optimize generation modules (LLM/VLM) through fine-tuning for better outputs
- Explore OK-VQA like datasets for comprehensive OOD representation
- Use fine-tuning to create synthetic questions for underrepresented
 OOD cases

Thank You!

